
Lecture 5

CS336

Tatsu H

GPU S

Outline and goals

❖ Make CUDA and GPUs less magic

http s://www.thonking.ai/p/what-shapes-do-mat rix-multiplicat ions Dao et al, Flash At ten tion

Understand when GPUs get slow Understand how to make fast algorithms

Before we start..

Substantial credit goes to a few sources that I’d like to highlight..

Horace He’s blog CUDA Mode group

And other sources including https://nichijou.co/, https://jonathan-hui.medium.com/

https://nichijou.co/

Organization today:

❖ Part 1: GPUs in depth – how they work and important parts

❖ Part 2: Understanding GPU performance

❖ Part 3: Putting it together – unpacking FlashAttention

Setting the stage: compute leads to predictable perf

Often times, compute leads to predictable performance gains for language models

Faster hardware, better utilization, improved parallelization alone can drive progress (for now..)

Kaplan et al, Neural Scalin g Laws

How do we get compute scaling? Early on – Dennard scaing

But the traditional form of scaling (Dennard scaling) from 1980-2000s has tapped out.

.. How do we feed LLMs’ insatiable appetite for compute?

Parallel scaling continues

Parallel scaling with GPUs has scaled > 1000x in 10 years.
There is no LLM scaling without GPU scaling

Bill dally, HotChips keynote

How is a GPU different from a CPU?

CPUs optimize for a few, fast threads while GPUs optimize for many many threads

Many tiny compute units (ALUs).
Much less support for branching (control, cache)

CPUs optimize for latency (each thread finishes quickly)
GPUs optimize for throughput (total processed data)

https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/

Anatomy of a GPU (execution units)

Each SM further contains many SPs
(streaming processor) that can
execute ‘threads’ in parallel

GPUs have many SM (streaming
multiprocessors) that independently
execute ‘blocks’ (jobs).

Anatomy of a GPU (memory)

The closer the memory to the SM, the faster it is – L1 and shared memory is inside
the SM. L2 cache is on die, and global memory are the memory chips next to the GPU

SRAM (shared/cache memory) is much more expensive (100x) but ~ 8x faster than DRAM (Global memory)

Execution model of a GPU

There are 3 important players in the execution model

Threads: Threads ‘do the work’ in parallel – all threads execute the same instructions but with
different inputs (SIMT).

Blocks: Blocks are groups of threads. Each block runs on a SM w/ its own shared memory.

Warp: Threads always execute in a ‘warp’ of 32 consecutively numbered threads each.

Memory model of a GPU

Each thread can access its own register, and shared memory within the block.

Information that goes across blocks need to be read/written to global memory (slow)

Side thread – What about TPUs?

GPUs, TPUs, and many other accelerators are at a high level, similar

Core structure – lightweight control, fast (big) matmul unit, fast memory.

Differences - how the accelerators are networked (in the parallelism lecture)
 - no warps (just blocks – tradeoffs in matmul vs non-matmul)

A GPU has more SMs
TPUs has fewer TCs

(but similar matmul perf)

Strengths of the GPU model

❖ Easily scales up hard workloads (by adding more SMs)

❖ Easy (?) to program due to the SIMT model

❖ Threads are ‘lightweight’ and can be stopped and started

GPUs as fast matrix multipliers

Early days of NVIDIA GPUs – programmable shaders. Researchers hacked this to do matmuls

New matmul hardware means matmuls are fast and special

Tensor cores (introduced in V, T series) are specialized matrix multiplication circuits.

Matmuls are >10x faster than other floating point ops!

Compute scaling is faster than memory scaling

FLOPs scale faster than memory – it’s hard to keep our compute units fed with data!

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Recap: GPUs – what are they and how do they work

❖ GPUs are massively parallel – same instructions
applied across many workers

❖ Compute (and esp matmuls) have scaled faster
than memory

❖ We have to respect the memory hierarchy to
make things go fast.

Part 2: Making ML workloads fast on a GPU

Performance on a GPU can be complex, even for something as simple as a square matmul

What makes ML workloads fast?

The roofline model

Key to this section: how do we avoid being memory bound?

How do we make GPUs go fast?

1. Control divergence (not a memory bottleneck..)

2. Low precision computation

3. Operator fusion

4. Recomputation

5. Coalescing memory

6. Tiling

Control divergence (not a memory issue)

GPUs operate in a SIMT model – every thread in a warp is executing the same instruction

Conditionals are fine, but lead to significant overhead from the execution model

Trick 1: Low precision computation

If you have fewer bits, you have fewer bits to move

Low precision improves arithmetic intensity

Example: elementwise ReLU (𝑥 = max(0, 𝑥)) on a vector of size 𝑛.

(Float 32 case)

Memory access: 1 read (x), 1 write (if x < 0), float 32 = 8 bytes

Operations: 1 comparison op, 1 FLOP.

Intensity: 8 bytes / FLOP

(Float 16)

Memory access: 1 read (x), 1 write (if x < 0), float 16 = 4 bytes

Operations: 1 comparison op, 1 FLOP.

Intensity: 4 bytes / FLOP

Low precision drives faster matrix multiplies

Lots of operations in modern GPUs are accelerated via low / mixed precision operations

Tensor cores

https://nvlabs.github.io/eccv2020-mixed-precision-tutorial/files/dusan_stosic-training-neural-networks-with-tensor-cores.pdf

https://nvlabs.github.io/eccv2020-mixed-precision-tutorial/files/dusan_stosic-training-neural-networks-with-tensor-cores.pdf

Trick 2: Operator fusion

Think of a GPU like a factory – inputs come from a warehouse (memory) and is
processed at a factory

https://horace.io/brrr_intro.html

Compute scales up, memory doesn’t

Operator fusion to minimize memory access

What if we have to do many operations? Shipping back and forth is somewhat silly

Fused kernelNaïve (non-fused)

Example – sines and cosines

Computing sin2𝑥 + cos2 𝑥 naively launches 5 CUDA kernels (back and forth)

https://towardsdatascience.com/how-pytorch-2-0-accelerates-deep-learning-with-operator-fusion-and-cpu-gpu-code-generation-35132a85bd26

https://towardsdatascience.com/how-pytorch-2-0-accelerates-deep-learning-with-operator-fusion-and-cpu-gpu-code-generation-35132a85bd26

Fusion example

All 5 pointwise operations can be fused into a single CUDA kernel call.

‘Easy’ fusions like this can be done automatically by compilers (torch.compile)

Trick 3: recomputation

In backpropagation, we store the activations (yellow) and compute Jacobians (green)

[From cs221]

Storing (and retrieving) activations can be expensive!

Let’s say we stack 3 sigmoids on top of each other.

This is really terrible for perf – 8 mem read/writes, very low arithmetic intensity.

https://dev-discuss.pytorch.org/t/min-cut-optimal-recomputation-i-e-activation-checkpointing-with-aotautograd/467

Throw away the activations, re-compute them!

Throwing away computation can actually be optimal, w/ 5/8th the memory accesses!

https://dev-discuss.pytorch.org/t/min-cut-optimal-recomputation-i-e-activation-checkpointing-with-aotautograd/467

Trick (?) 4: Memory coalescing and DRAM

DRAM (global memory) is read in ‘burst mode’ – each read gives you many bytes!

[https://blog.csdn.net/xll_bit/article/details/117702476]

Burst mode comes from the slow per-row copy to the sense amplifier
[https://www.youtube.com/watch?v=9BjVUmaXaCQ]

Memory coalescing

Memory accesses are coalesced if all the threads (in a warp) fall within the same burst

Reminder: a warp is a set of 32 consecutively
numbered threads that execute together in a
block. Memory accesses happen together

Coalescing for matrix multiplication

For row-major matrices – threads that move along rows are not coalesced

Note how the second diagram reads the entire vector at each step!

Trick 5 (the big one): tiling

Tiling is the idea of grouping and ordering threads to minimize global memory access.

Let’s go back to matrix multiplication..

Note that memory access is not coalesced, and repeated (M0,0 and N1,0)

Tiling – store and reuse information in shared memory

Cut up the matrix into smaller ‘tiles’, and load this into shared memory

Compute the matrix multiply in ‘phases’

1. Load 𝑀0,0 and 𝑁0,0 tiles into SHM

2. Compute partial sums for 𝑃
(Done with one tile)

3. Load the 𝑀0,0 and 𝑁2,0 tile into SHM

4. …

Advantages: repeated reads now access shared, not global memory
 and memory access can be coalesced

Tiling math

Non-tiled matrix multiply: each input is read 𝑁 times from global memory

Tiled matrix multiply: each input is read
𝑁

𝑇
 times from global memory, and 𝑇 times

within each tile. This is a factor of 𝑇 reduction in global memory access

Complexities with tiling

Tile sizes may not divide the matrix size and lead to low utilization

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#tile-quant

Factors affecting tile sizes
• Coalesced memory access
• Shared memory size
• Divisibility of the matrix dim

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Complexities with tiling 2 – memory alignment

Coalesced accesses may be impossible depending on the dimension of the matrix..
(have to do padding)

Memory comes in bursts

Loading tiles are fast if
bursts align with the matrix

https://www.thonking.ai/p/what-shapes-do-matrix-multiplications

https://www.thonking.ai/p/what-shapes-do-matrix-multiplications

Putting it together: understanding a matrix mystery

Why is it faster to have bigger matrices?

This section is from https://www.thonking.ai/p/what-shapes-do-matrix-multiplications

https://www.thonking.ai/p/what-shapes-do-matrix-multiplications

Matrix mystery

We understand some of this (compute intensity, tiling). Let’s take a closer look..

Part 1: tiling

Tiling has a major impact through alignment.

Part 2: wave quantization

What’s with the periodic behavior?

This happens at 1792 to 1793 size.

Why? Using a tile size of 256 × 128, there are
1792

256
×

1792

128
= 7 × 14 = 98

tiles. If we increase this to 1793, we have
8 × 15 = 120

tiles.

An A100 has 108 SMs, so it cannot execute all 120

Recap of part 2: making ML workloads go fast

❖ Reduce memory accesses

❖Coalescing

❖Fusion

❖ Move memory to shared memory

❖Tiling

❖ Trade memory for compute/accuracy

❖Quantization

❖Recomputation

Part 3: Using what we know to understand Flash Attention

Flash attention [Dao et al] dramatically accelerates attention.. But how?

Technique from paper:

Recap of attention computation

Attention computation: 3 matrix multiplies (K, Q, V) with a softmax in between

Tiling part 1: tiling for the KQV matrix multiply

This figure 1 from the paper is literally just tiling for a KQV matrix multiply..

But what do we do about the softmax?

Tiling part 2: incremental computation of the softmax
From Mikailov and Gimelshein 2018,

Normal softmax
Online softmax

To keep track of the max, incrementally update the max, and set up a telescoping sum
This lets you compute the softmax tile-by-tile

Putting it all together – the forward pass of flash attention

From Dao 2023, we see

• Tile-wise computation of the inner products, (𝑆)

• Fusion of the exponential operator

• Tile-wise computation of the softmax via the online, telescoping sum trick

(We won’t cover the backward pass – but they recompute tile-by-tile..)

Recap for the whole lecture

❖ Hardware powers scale, and low-level details
determine what scales or doesnt

❖ Curent GPU based compute strongly
encourages thinking about matmul + data
movement

❖ Thinking carefully about the GPU (coalescing,
tiling, fusion) leads us to good performance

	Slide 1: Lecture 5
	Slide 2: Outline and goals
	Slide 3: Before we start..
	Slide 4: Organization today:
	Slide 5: Setting the stage: compute leads to predictable perf
	Slide 6: How do we get compute scaling? Early on – Dennard scaing
	Slide 7: Parallel scaling continues
	Slide 8: How is a GPU different from a CPU?
	Slide 9: Anatomy of a GPU (execution units)
	Slide 10: Anatomy of a GPU (memory)
	Slide 11: Execution model of a GPU
	Slide 12: Memory model of a GPU
	Slide 13: Side thread – What about TPUs?
	Slide 14: Strengths of the GPU model
	Slide 15: GPUs as fast matrix multipliers
	Slide 16: New matmul hardware means matmuls are fast and special
	Slide 17: Compute scaling is faster than memory scaling
	Slide 18: Recap: GPUs – what are they and how do they work
	Slide 19: Part 2: Making ML workloads fast on a GPU
	Slide 20: What makes ML workloads fast?
	Slide 21: How do we make GPUs go fast?
	Slide 22: Control divergence (not a memory issue)
	Slide 23: Trick 1: Low precision computation
	Slide 24: Low precision improves arithmetic intensity
	Slide 25: Low precision drives faster matrix multiplies
	Slide 26: Trick 2: Operator fusion
	Slide 27: Operator fusion to minimize memory access
	Slide 28: Example – sines and cosines
	Slide 29: Fusion example
	Slide 30: Trick 3: recomputation
	Slide 31: Storing (and retrieving) activations can be expensive!
	Slide 32: Throw away the activations, re-compute them!
	Slide 33: Trick (?) 4: Memory coalescing and DRAM
	Slide 34: Memory coalescing
	Slide 35: Coalescing for matrix multiplication
	Slide 36: Trick 5 (the big one): tiling
	Slide 37: Tiling – store and reuse information in shared memory
	Slide 38: Tiling math
	Slide 39: Complexities with tiling
	Slide 40: Complexities with tiling 2 – memory alignment
	Slide 41: Putting it together: understanding a matrix mystery
	Slide 42: Matrix mystery
	Slide 43: Part 1: tiling
	Slide 44: Part 2: wave quantization
	Slide 45: Recap of part 2: making ML workloads go fast
	Slide 46: Part 3: Using what we know to understand Flash Attention
	Slide 47: Recap of attention computation
	Slide 48: Tiling part 1: tiling for the KQV matrix multiply
	Slide 49: Tiling part 2: incremental computation of the softmax
	Slide 50: Putting it all together – the forward pass of flash attention
	Slide 51: Recap for the whole lecture

