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“» Make CUDA and GPUs less magic

Understand when GPUs get slow
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Understand how to make fast algorithms
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Before we start..

Substantial credit goes to a few sources that I’d like to highlight..

<
~ "» CUDA MODE
\\ N Yz @CUDAMODE - 2.62K subscribers - 13 videos

A CUDA reading group and community https://discord.gg/cudamode >

Thonk From First Principles
ML Systems from first principles. Aims to be better

github.com/cuda-mode

than a ChatGPT summary.

Horace He’s blog CUDA Mode group

And other sources including https://nichijou.co/, https://jonathan-hui.medium.com/


https://nichijou.co/

Organization today:

< Part 1: GPUs in depth - how they work and important parts

“* Part 2: Understanding GPU performance

< Part 3: Putting it together - unpacking FlashAttention



Setting the stage: compute leads to predictable perf

Often times, compute leads to predictable performance gains for language models

Validation Loss

........ L=2.57" C-oma

10 10° 107 10 10°
Compute (PetaFLOP/s-days)

4

10

Parameters

Kaplan et al, Neural Scaling Laws

Faster hardware, better utilization, improved parallelization alone can drive progress (for now..)



How do we get compute scaling? Early on - Dennard scaing
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Hennessy and Patterson, Turing Lecture 2018, ovcvhld over “42 Years of Pro«mn Data”

https://www.karlrupp.net/2018/02/42-y of trend-data/; “First Wave” added by Les Wilson, Frank Schirrmeister
Original data up to the year 2010 collected and plotted by M. Horowitz, F. ubomo O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

But the traditional form of scaling (Dennard scaling) from 1980-2000s has tapped out.
. How do we feed LLMs’ insatiable appetite for compute?



Parallel scaling continues

Parallel scaling with GPUs has scaled > 1000x in 10 years.
Thereis no LLM scaling without GPU scaling

Gains from Single-Chip Inference Performance - 1000X in 10 years
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How is a GPU different from a CPU?

CPUs optimize for a few, fast threads while GPUs optimize for many many threads

Control

ALU

ALU

ALU

ALU

CPU

I (1L

GPU

Many tiny compute units (ALUs).
Much less support for branching (control, cache)

GPU - High Throughput Processor

Computation Thread

- - I Waiting for data

CPU core - Low lency Processor

= - —— — — Ready to be processed
RN E N EERNRE R N

CPUsoptimize for latency (each thread finishes quickly)
GPUs optimize for throughput (total processed data)

https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/



Anatomy of a GPU (execution units
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GA100 Full GPU with 128 SMs

GPUs have many SM (streaming
multiprocessors) that independently
execute ‘blocks’ (jobs).



Anatomy of a GPU (memory)

The closer the memory to the SM, the fasteritis - L1 and shared memory is inside
the SM. L2 cacheis on die, and global memory are the memory chips next to the GPU

HBM2(e) PHY. 3x'512-Bit HBM2(e) PHY/ 3x 512-Bit HBM2(e) PHY.

TABLE IV Memory "tto.l »mz.s;nj .prsJ .M.emor:y Control | 1024 8it] ¢ 2.430 - 3,186 Gpbs | Nvidia GA100, Z7nm TSMC
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Shared Memory (1d/st) (23/19)
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Partition R L Partition

LaxINVLINK{RHY, 8"

Interconnection Graphics Video
interface Processing Memory

Unit (GPU)  (VRAM)

Network

interface . Voltage regulator
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Processing Motherboard
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% Die shot from Nvidia

HBM2(e) PHY. HBM2(e) PH; 3x 512-Bit | HBM2(e)
1024-8i¢ © 2.430 - 3:186/Gpbs | Memory Control | 1024:8it © 2.430 - 3186/Gpbs | Memory Control [[1024:8it]e 2.430 - s | Annotations by Locuza, June 2021

SRAM (shared/cache memory) is much more expensive (100x) but ~ 8x faster than DRAM (Global memory)



Execution model of a GPU

This CUDA application uses 256 threads per block each warp contains 32 threads 4 Warp schedulers per SM

CUDA Program ( ‘ \ Warp Warp Warp Warp
Scheduler 0 Scheduler 1 Scheduler 2 | | Scheduler 3

Warp 0
Block 0 Block 1 Block 4095 1
=aw each block ready
is divided ¢ INT32 INT32 FP32 FP32 | FP32 FP32 FP32 FP32

into warps Warp 1

" INT32 INT32 FP32 FP32 FP32 FP32 FP32 FP32
assign to an SM

e INT32 INT32 FP32 FP32 |l FP32 FP32 FP32 FP32

INT32 INT32 FP32 FP32 | FP32 FP32 FP32 FP32

INT32 INT32 FP32 FP32 | FP32 FP32 FP32 FP32

INT32 INT32 [l FP32 FP32 [l FP32 FP32 [l FP32 FP32

INT32 INT32 [l FP32 FP32 [l FP32 FP32 [l FP32 FP32
Warp 7
(G2fiveads)] | INT32 INT32 i FP32 FP32 [l FP32 FP32 [l FP32 FP32
Block i Warp 1

instruction 10

There are 3 important players in the execution model

Threads: Threads ‘do the work’ in parallel - all threads execute the same instructions but with
different inputs (SIMT).

Blocks: Blocks are groups of threads. Each block runs on a SM w/ its own shared memory.
Warp: Threads always execute in a ‘warp’ of 32 consecutively numbered threads each.



Memory model of a GPU

Device code can: Grid

— R/W per-thread registers

— R/W per-thread local memory Blocki(0-9) BleckG U

— R/W per-block shared memory

— R/W per-grid global memory

— Read only per-grid constant
memory

Host code can

—  Transfer data to/from per grid |, ¢
global and constant memories

Each thread can access its own register, and shared memory within the block.
Information that goes across blocks need to be read/written to global memory (slow)



Side thread - What about TPUs?

GPUs, TPUs, and many other accelerators are at a high level, similar

The Scalar Unit sort of acts

like a CPU ‘dispatching’

HBM stores the

. ; . ights, ivati ,
instructions to the VPU and Scalar Unit weights, activations

MXU

The VPU performs
elementwise operations
(e.g. activations), loads
data into the MXU

The MXU performs

matrix multiplications
- and is therefore our
driver of chip FLOP/s.

batch data etc

Vector Unit —> High
7 (VPU) Bandwidth

Memory
(HBM)

Matrix Multiply Unit (MXU)

Abstract layout of a TPU TensorCore.

HBM bandwidth: determines
how fast data goes to and
from the computational
elements

optimiser states, new

A GPU has more SMs
TPUs has fewer TCs

(but similar matmul perf)

Core structure - lightweight control, fast (big) matmul unit, fast memory.

Differences - how the accelerators are networked (in the parallelism lecture)
- no warps (just blocks - tradeoffs in matmul vs non-matmul)



Strengths of the GPU model

* Easily scales up hard workloads (by adding more SMs)

» Easy (?) to program due to the SIMT model

SIMT CUoA Com oA Com oA Com CUOA Cem mo— N
1 instruction — multiple
!hreads ﬁ E E

"

L J;J LU’"’ L—J L—’ W—’w‘ / thread

“* Threads are ‘lightweight’ and can be stopped and started

Computation Thread

Processing

I Waiting for data
CPU core - Low Latency Processor =

Ready to be processed
“ryErnnrrnnrnnm




GPUs as fast matrix multipliers

Fast Matrix Multiplies using Graphics Hardware

E. Scott Larsen David McAllister
Department of Computer Science Department of Computer Science
University of North Carolina at Chapel Hill University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA Chapel Hill, NC 27599-3175 USA

larsene@cs.unc.edu davemc@cs.unc.edu

Implementation

‘We mention here some observations we made during our
implementation that may be of interest to those duplicating
our results.

Refresh Rate We found that setting the refresh rate on
the monitor as low as possible made marginal improve-
ments (about 10%).

RGBA We found that 4 numbers can be packed into a
single pixel, by setting the red, green, blue, and alpha
channels to different values.

Texture Format Changing the format of the texture cre-
ation and read-back from RGBA to ABGR_EXT (in
OpenGL) gave about 40% improvement on our hard-
ware. This is because the hardware driver avoids re-
formatting the data from the application format to the
card format. There is a number of options here, with
near equal performance for each option except the one
used natively on the specific hardware. The native
format should give significant improvement.

Full Screen Running full screen instead of in a window
provides improved performance.

Various other optimizations yielded minor (<1%) improve-
ments.

Early days of NVIDIA GPUs - programmable shaders. Researchers hacked this to do matmuls




New matmul hardware means matmuls are fast and special

Matmul vs. non-matmul FLOPS across GPUs

10°] —— non-matmul
~——— matmul

102 p

TFLOP/S

101 -

K80 M80 P100 V100 A100 H100
GPU

Tensor cores (introduced in V, T series) are specialized matrix multiplication circuits.
Matmuls are >10x faster than other floating point ops!



Compute scaling is faster than memory scaling

Scaling of Peak hardware FLOPS, and Memory/Interconnect Bandwidth
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https://medium.comy/riselab/ai-and-memory-wall-2cb4265cb0b8

FLOPs scale faster than memory - it’s hard to keep our compute units fed with data!



Recap: GPUs - what are they and how do they work

% GPUs are massively parallel - same instructions
applied across many workers

X/

s Compute (and esp matmuls) have scaled faster
than memory

TABLE IV
THE MEMORY ACCESSES LATENCIES

% We have to respect the memory hierarchy to Memory type | CPY (eycles)
. obal memory
make things go fast. L2 cache 200
L1 cache 33
Shared Memory (1d/st) (23/19)




Part 2: Making ML workloads fast on a GPU

FLOPs achieved for square matmuls
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Performance on a GPU can be complex, even for something as simple as a square matmul



What makes ML workloads fast?

The roofline model

- Dense matrix multiply €
- Sparse matrix multiply @

5 ‘e‘i\% GPU ALU throughput
3 ¢
& 1000+ CPU ALU throughput
5 X 2
Z 100
Q
=y
=4
o 10—
£z
'—
17 T T
0.01 0.1 1 10 100 1000

Operational Intensity (flops/byte)

Key to this section: how do we avoid being memory bound?



How do we make GPUs go fast?

1. Control divergence (not a memory bottleneck..)
2. Low precision computation

3. Operator fusion

4. Recomputation

5. Coalescing memory

6. Tiling



Control divergence (not a memory issue)

GPUs operate in a SIMT model - every thread in awarp is executing the same instruction

Instruction Decoder and Warp Scheduler
GPU -

SIMT
1 instruction — multiple
threads

Conditionals are fine, but lead to significant overhead from the execution model

if (threadidx.x < 4) {
A;
B;
} else {
X3
Y;

i
Z;

» Time




Trick 1: Low precision computation

Gains from

Number Representation
* FP32, FP16, Int8

» (TF32, BF16)

* ~16x

Complex Instructions
* DP4, HMMA, IMMA
e ~12.5x

Process
e 28nm, 16nm, 7nm, 5nm
& >9 5%

Sparsity
e V2

Int 8 TOPS

4500.00

4000.00

3500.00

3000.00

2500.00

2000.00

1500.00

Single-Chip Inference Performance - 1000X in 10 years

H100

FP8
Transformer Eng

A100
Structured
Sparsity
1248.00
IMMA

I
HMMA  |nt8 Tensor
Tensor Cores
Cores

4000.00

If you have fewer bits, you have fewer bits to move



Low precision improves arithmetic intensity

Example: elementwise ReLU (x = max(0, x)) on a vector of size n.

(Float 32 case)

Memory access: 1 read (x), 1 write (if x < 0), float 32 = 8 bytes
Operations: 1 comparison op, 1 FLOP.

Intensity: 8 bytes / FLOP

(Float 16)

Memory access: 1 read (x), 1 write (if x < 0), float 16 = 4 bytes
Operations: 1 comparison op, 1 FLOP.

Intensity: 4 bytes / FLOP



Low precision drives faster matrix multiplies

Lots of operations in modern GPUs are accelerated via low / mixed precision operations

Tensor cores

Full precision
product more products

16-bit input —/ l ! 1
16-bit input —1

— FP32

Sum with
FP32
accumulator

Operations that can use 16-bit storage (FP16/BF16)

Matrix multiplications

Most pointwise operations (e.g. relu, tanh, add, sub, mul)
Operations that need more precision (FP32/FP16)

Adding small values to large sums can lead to rounding errors

Reduction operations (e.g. sum, softmax, normalization)
Operations that need more range (FP32/BF16)

Pointwise operations where |f(x)| > |x| (e.g. exp, log, pow)

Loss functions


https://nvlabs.github.io/eccv2020-mixed-precision-tutorial/files/dusan_stosic-training-neural-networks-with-tensor-cores.pdf

Trick 2: Operator fusion

Think of a GPU like a factory -

processed at a factory
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https://horace.io/brrr_intro.html



Operator fusion to minimize memory access

What if we have to do many operations? Shipping back and forth is somewhat silly

Me,mory
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Compile
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Fused kernel



Example - sines and cosines

FX GRpPH
TR

class GraphModule(torch.nn.Module):
def forward(self, x : torch.Tensor):

# File: /tmp/ipykernel_2583/1502985755.py:2, code:

sin = torch.sin(x)

pow_1 = sin #x 2; sin = None

cos = torch.cos(x); x = None

pow_2 = cos #x 2; cos = None

add = pow_1 + pow_2; pow_1 = pow_2 = None
return (add,)

GiRAPH V12

namessin R (@ namesfcos
op_code=call_function op_code=call_function
S (2) = e
num_users=1 ) num_users=1
names%pow_1 ) (  name=%pow_2
op_code=call_function op_code=call_function
2 target=. target=_
sf’ﬂ (1) args=( GRS
) ) i
num_users=1 ) num_users=1

los(z)

co szC-:.)


https://towardsdatascience.com/how-pytorch-2-0-accelerates-deep-learning-with-operator-fusion-and-cpu-gpu-code-generation-35132a85bd26

Fusion example

BerorEe 0rernTOR ToRCwu InoucTOR
FusionN OPERATOR FUSION

All 5 pointwise operations can be fused into a single CUDA kernel call.
‘Easy’ fusions like this can be done automatically by compilers (torch.compile)



Trick 3: recomputation

Loss(x,y, w) = (W - ¢(z) — y)?
loss = 9](+)3[1

2(residual) w = [31]:0te) = 21 =2

residual = 3| — |6 'backpropagation
Vwloss(z,y, w) = [6,12]

‘ Definition: Forward/backward values

Forward: |, is value for subexpression rooted at i

Backward: g; = %"J’fs is how f; influences loss
k2

g Algorithm: backpropagation algorithm———

Forward pass: compute each f; (from leaves to root)
Backward pass: compute each g; (from root to leaves)

[From ¢cs221]

In backpropagation, we store the activations (yellow) and compute Jacobians (green)



Storing (and retrieving) activations can be expensive!

Let’s say we stack 3 sigmoids on top of each other.

X
¢ dx
sigmoid T
y —»s2
. ; Backward |
sigmoid raph
y s J
sigmoid / T \
s2 s1 dout
out
Old Fwd pass Old Bwd pass
1 mem read 3 mem reads
3 mem writes 1 mem writes

This is really terrible for perf - 8 mem read/writes, very low arithmetic intensity.

https://dev-discuss.pytorch.org/t/min-cut-optimal-recomputation-i-e-activation-checkpointing-with-aotautograd/467



Throw away the activations, re-compute them!

X X
| | dx
sigmoid sigmoid T
| v e
sigmoid sigmoid BOrllg(;mald
ackwar
' v > graph
sigmoid sigmoid — T
¢ dout
out
1 mem read 2 mem reads
1 mem write 1 mem write

Throwing away computation can actually be optimal, w/ 5/8t the memory accesses!

https://dev-discuss.pytorch.org/t/min-cut-optimal-recomputation-i-e-activation-checkpointing-with-aotautograd/467



Trick (?) 4: Memory coalescing and DRAM

DRAM (global memory) is read in ‘burst mode’ - each read gives you many bytes!

Burst section Burst section Burst section Burst section

IR ¢ s lel7 oo 00 ainlilE

— Each address space is partitioned into burst sections

— Whenever a location is accessed, all other locations in the same
section are also delivered to the processor

— Basic example: a 16-byte address space, 4-byte burst sections

— In practice, we have at least 4GB address space, burst section
sizes of 128-bytes or more

[https://blog.csdn.net/xl|_bit/article/details/117702476]

H R

Column Muipiexer/Demultipiexer

< Burst mode comes from the slow per-row copy to the sense amplifier

[https://www.youtube.com/watch?v=9BjVUmaXaCQ]




Memory coalescing

Memory accesses are coalesced if all the threads (in a warp) fall within the same burst

Coalesced Loads
Tg T4 Tz Ts

T

Burst section Burst section

Coalesced Loads
To Ti T T4

9 10 11 12 13 14 15

Burst section Burst section

— When all threads of a warp execute a load instruction, if all accessed
locations fall into the same burst section, only one DRAM request
will be made and the access is fully coalesced.

Reminder: a warp is a set of 32 consecutively
numbered threads that execute togetherin a
block. Memory accesses happen together



Coalescing for matrix multiplication

Access direction in

not coalesced coalesced Keiviel code
T
M; o Myq Mo My g
Mo My g Myp My
Thread 1 M3U M'H MBZ Mijf)‘
Load iteration 1
Thread 2 " T : -

Load iteration 0
To Tq To T3

(B)

1,0 M14 Myz Myg Mo My 1 My, M3 M3 g Mgy M3 Mg g

For row-major matrices - threads that move along rows are not coalesced
Note how the second diagram reads the entire vector at each step!



Trick 5 (the big one): tiling

Tiling is the idea of grouping and ordering threads to minimize global memory access.

Let’s go back to matrix multiplication..

Access order

thread o Mo,(%* No.o | Mo “N1oJ| Moz * Noo | Mos* Nag
thread) 1 |{|{Mo.o)* No1 [ M4 *Nq 4 | Mg2* Np 1 | Mg3™ N34
MOO M0.1 M0.2 M03 thread»]'o M1'0 * NO,O M1'1 N110 M1'2 * N2,0 M1,3 * N3,0
Mio Mqq Myp My g thread 1 | My *Ng4 [ M4 *Nqyq [ Myo*Npyq | Mg3* Nj4

Note that memory access is not coalesced, and repeated (M0,0 and N1,0)

v




Tiling - store and reuse information in shared memory

Cut up the matrix into smaller ‘tiles’, and load this into shared memory

Compute the matrix multiply in ‘phases’
1. Load M,  and N g tiles into SHM

2. Compute partial sums for P
(Done with onettile)

3. Loadthe My,and N, tileinto SHM

Advantages: repeated reads now access shared, not global memory
and memory access can be coalesced



Tiling math
tile size T' matrix size N
u [ ] ﬂ .
Matrix A Matrix B Matrix C
D Quter loop over tiles I:I Inner loop over elements . Temporary result tile

[ Current tile in outer loop [] Current element in inner loop

Non-tiled matrix multiply: each inputis read N times from global memory

Tiled matrix multiply: each inputis read % times from global memory, and T times
within each tile. This is a factor of T reduction in global memory access



Complexities with tiling

Tile sizes may not divide the matrix size and lead to low utilization

Figure 6. Example of tiling with 128x128 thread block tiles. (a) Best case - matrix dimensions are divisible by tile dimensions (b) Worse case -
tile quantization results in six thread blocks being launched, two of which waste most of their work.

256

128

256

128

Factors affecting tile sizes

(@)

* Coalesced memory access

* Shared memory size

 Divisibility of the matrix dim

256

257

128

128

(b)



https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Complexities with tiling 2 - memory alighment

Burst section Burst section Burst section Burst section

Memory comes in bursts RNENEN ¢ |5 |6 | 7[5 [ [w0o]n[m]]m]s]

Al igneol Lagod' unal igneal Lagmd

Loading tiles are fast if
bursts align with the matrix

One Nice Tile &

Two Bad Tiles A

Coalesced accesses may be impossible depending on the dimension of the matrix..
(have to do padding)


https://www.thonking.ai/p/what-shapes-do-matrix-multiplications

Putting it together: understanding a matrix mystery

¢ - - Andrej Karpathy &
@karpathy
The most dramatic optimization to nanoGPT so far (~25% speedup) is to
simply increase vocab size from 50257 to 50304 (nearest multiple of

64). This calculates added useless dimensions but goes down a different
kernel path with much higher occupancy. Careful with your Powers of 2.

10:36 AM - Feb 3, 2023 - 1.2M Views

Why is it faster to have bigger matrices?

This section is from https://www.thonking.ai/p/what-shapes-do-matrix-multiplications


https://www.thonking.ai/p/what-shapes-do-matrix-multiplications

Matrix mystery

FLOPs achieved for square matmuls

Wave. Q Uah"'iZ&hO" 128

0 512 1024 1536 2048 2560 3072 3584 4096

We understand some of this (compute intensity, tiling). Let’s take a closer look..



Part 1: tiling

250 A

200 A

150 A

TF/s

100 1

50 1

FLOPs achieved for square matmuls
(color coded by whether a shape is divisible by K)
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N: NxN @ NxN matmul

Tiling has a majorimpact through alignment.

Aligneol Lagmd- unaligned Lagmd'

One Nice Tile &

Two Bad Tiles A



Part 2: wave quantization

What’s with the periodic behavior?

4 /i .‘.f This happens at 1792 to 1793 size.

/
/ J.I/ Why? Using a tile size of 256 x 128, there are
w’

1792 1792
256 128 7x14 =98
tiles. If we increase this to 1793, we have
8 x 15 =120

tiles.

1536 2048  AnA100 has 108 SMs, so it cannot execute all 120



Recap of part 2: making ML workloads go fast

\/
0‘0

>

*

Reduce memory accesses
“* Coalescing
“* Fusion

Move memory to shared memory
< Tiling

Trade memory for compute/accuracy
** Quantization
“* Recomputation

Coalesced Loads Coalesced Loads
To Ty T, Ty To T, T Ty

nnnn456739101112131415

Burst section Burst section  Burst section Burst section

— When all threads of a warp execute a load instruction, if all accessed
locations fall into the same burst section, only one DRAM request
will be made and the access is fully coalesced.

tile size T' matrix size N

| NN
| EEEN
1

||
H
Matrix A Matrix B Matrix C'
Outer loop over tiles D Inner loop over elements . Temporary result tile

[ Current tile in outer loop [[] Current element in inner loop

X X
dx
l sigmoid I | sigmoid | '
[ sigmoid | [ sigmoid | | Lorginal
| — graph
I sigmoid l | sigmoid |—” f
' dout
out
New Fwd pass New Bwd pass
1 mem read 2 mem reads

1 mem write 1 mem write



Part 3: Using what we know to understand Flash Attention

Flash attention [Dao et al] dramatically accelerates attention.. But how?

Attention on GPT-2
15- ;l Matmul = Effect of Block Size

Dropout 61 ,%;_

- ] Attention | Standard FLASHATTENTION  § L6
E101 Tsott GFLOPs 66.6 75.2 247 Runtime g
g Jrormax HBM R/W (GB) | 40.3 4.4 8o, Hen g
F o 1 Fused Runtime (ms) 41.7 7.3 s | Cesse [ 20
Mask  Kernel @ T T 3

J — T 64128 256 512 &

0. ] Matmul Block Size

PyTorch FlashAttention

Technique from paper:

—_——— = g

We apply two %tabhshed technlques (tiling, recomputatlon) to overcome the technical challenge of
computing exact attention in sub-quadratic HBM accesses. We describe this in Algorithm 1. The main idea

e e e ——em e =



Recap of attention computation

Attention computation: 3 matrix multiplies (K, Q, V) with a softmax in between

t 3 sets of all pairs of
- [ | BXOoKXE attention scores!
softmax| XQK"XT | xv = —

p output € R™**4
mix



Tiling part 1: tiling for the KQV matrix multiply

Outer Loop

K:dxN

Q:Nxd H
<\ SRAM: 19 TB/s (20 MB) 0 b
SRAM El e e
E [
i\ HBM: 1.5TB/s (40 GB) g o1 Wy copy [l | ©
HBM S + ’H Compute Block | =S
. g copy! | s 118 e
(VEIRW NS DRAM: 12.8GB/s £ Lol |2 8
(CPU DRAM) (>178) B 1B
oo 13>
Memc?ry Hierarchy Wlt!l ~ 7 7 Toutputto HBM
Bandwidth & Memory Size smiaxv: x4 [T
Inner Loop
FlashAttention

This figure 1 from the paper is literally just tiling for a KQV matrix multiply..
But what do we do about the softmax?



Tiling part 2: incremental computation of the softmax

From Mikailov and Gimelshein 2018,

Normal softmax
) Online softmax
pe—— @

All major DL frameworks are using this safe version for the Softmax computation: TensorFlow

Algorithm 2 Safe softmax Algorithm 3 Safe softmax with online normalizer calculation
1: mg ¢ —o0 1: mg ¢~ —o0
2: for k + 1,V do 2: dp+0
3: my, < max(myg_1,T)) 3: forj «+ 1,V do
4: end for 4 m; < max(mj_i1,x;)
5:do 0 5: dj «dj_1 X €M1 T 4 e®i T
6: i'orj - l,V do 6: end for
T dj<djo ety 7: fori « 1,V do
8: end for . eFimmy
9: fori < 1,V do 8w T
10: " ea;—d—vm 9: end for
11: end for

To keep track of the max, incrementally update the max, and set up a telescoping sum
This lets you compute the softmax tile-by-tile



Stored in HBM

_____

1 ! Computed in SRAM
! (not materialized in HBM)

From Dao 2023, we see

—
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1
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AWM = exp(sM)
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| e
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I
|
1

Output

AD
[1€3)

* Tile-wise computation of the inner products, (S)
* Fusion of the exponential operator

)

o= 222 Sy

) Rescaling to
correct
denominator

* Tile-wise computation of the softmax via the online, telescoping sum trick

(We won’t cover the backward pass - but they recompute tile-by-tile..)



Recap for the whole lecture

\/
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Hardware powers scale, and low-level details
determine what scales or doesnt

Curent GPU based compute strongly
encourages thinking about matmul + data

movement

Thinking carefully about the GPU (coalescing,
tiling, fusion) leads us to good performance

Matmul vs. non-matmul FLOPS across GPUs

10°{ — non-matmul
—— matmul

10! A
K80 M80 P100 V100 A100 H100
GPU
Scaling of Peak hardware FLOPS, and
100
A100 >
1000000-] HW FLOPS:  60000x / 20 yrs (3.0x/2yrs) e
DRAM BW: 100x / 20 yrs (1.6x/2yrs) Y .v TPUVA

Interconnect BW: 30x / 20 yrs (1.4x/2yrs)

1996 1999 2002 2005 2008 2011 2014 2017 2020 2023
YEAR

doot 50

Memory Hierarchy with
Bandwidth & Memory Size

Inner Loop
FlashAttention
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