
Lecture 9

CS336

S CA L I N G L AWS - BAS I C S

Taking scaling seriously

Imagine the following scenario..

Your friend has given you ten thousand H100s for a month,
and asked you to build a good open source LM.

What do you do?

• Put together your infra team and distributed training framework (A2)

• Put together a great pretraining dataset (A4)

• Run a big model (but which one??) <- we are here.

Scaling isn’t easy

Wide or deep? How many heads? Which nonlinearity?

We could cargo cult things from existing LMs… but how do these get optimized in the first place?

Today: simple, predictive ‘laws’ for behaviors of LMs

The approach -

 scaling laws which are simple, predictive rules for model performance

Old and unpleasant: tune hyperparameters on big models
New (over?) optimism: tune on small models, extrapolate to large ones

Part 1. Scaling laws, history and background.

❖ Data scaling as empirical sample complexities

❖ Initial forays into understanding neural scaling with data

Sample complexity and rates

Theorists have thought about ‘scaling’ for a long time..

But these are upper bounds, not actual, realized loss values.

https://www.cs.cmu.edu/~epxing/Class/10701/slides/lecture16-VC.pdf
Hall, 1989

(learning in a finite set of k hypotheses)

(generative modeling for smooth densities)

https://www.cs.cmu.edu/~epxing/Class/10701/slides/lecture16-VC.pdf

Earliest (data) scaling law paper – 1993

Early history of scaling laws – data scaling

Log-linear scaling with data [Banko and Brill ‘01]

Early history of scaling laws – data scaling

Early tests of functional forms

Kolachina et al 2012 – power law relation between data and downstream performance

Hestness et al 2017

Earliest ‘large scale neural’ scaling work: Hestness 2017

Predictable scaling on many tasks (MT, LM, Speech) and hypothesized scaling shape.

Hestness II

Very ahead of its time..

“Emergence”

Scaling by compute

Speed = accuracy

Part 2. Neural (LLM) scaling behaviors

1.Data vs performance
“Are there simple rules that determine how data affects

performance?”

2. Data vs model size
Do we train on more data or bigger models?

3. Hyper-parameters vs performance
“How should we set hyperparameters on the big model??”

Scaling laws – power law relationships for many factors

These scaling laws hold on many different kind of phenomena!

They even hold in non-standard
settings (when train ≠ test)

[Kaplan+ 2020]

Data vs performance

What’s a data scaling law?

Data scaling laws : simple formula that maps dataset size (n) to error

What do we expect out of scaling laws?

Monotonic, logistic-
like curves

[Hestness+ 2017]

Data scaling laws for language models

First, an empirical observation

T
es

t
Lo

ss

Loss and dataset size is linear on a log-log plot

“Scale-free” or
“Power law”

(For language modeling, from Kaplan+ 2020)

Conceptual foundations of data scaling laws.

Q: Why do scaling laws show up?

 We know error should be monotone

But why is it a power law / linear in log-log?

A (?): Estimation error naturally decays polynomially.

But this answer may take a moment to understand. Let’s work through an example.

Example: If our task is to estimate the mean of a dataset, what’s the scaling law?

Toy example: mean estimation

Input: 𝑥1 … 𝑥𝑛 ∼ 𝑁(𝜇, 𝜎2)

Task: estimate the average as ො𝜇 =
σ𝑖 𝑥𝑖

𝑛

What’s the error? By standard arguments..

 E ො𝜇 − 𝜇 2 =
𝜎2

𝑛

This is a ‘scaling law’
log(𝐸𝑟𝑟𝑜𝑟) = −log 𝑛 + 2 log 𝜎

 More generally, any polynomial rate 1/𝑛𝛼 is a scaling law

Scaling law exponents: an intriguing mystery

Fact: Similar arguments show most ‘classical’ models (regression, etc) have
1

𝑛
 scaling

This means we should see y = −𝑥 + 𝐶

What do we find in neural scaling laws?

Machine translation Speech Language modeling

Very different from predictions.. Why might this be?

Detour: scaling laws for (nonparametric) learning

Neural nets can approximate arbitrary functions. Lets turn that into an example.

Input: 𝑥1 … 𝑥𝑛 uniform in 2D unit box. 𝑦𝑖 = 𝑓 𝑥𝑖 + 𝑁(0,1)

Task: estimate f(x)

Approach: cut up the 2D space into boxes with length 𝑛−
1

4

What’s our estimation error?

 Informally, we have 𝑛 boxes, each box gets 𝑛 samples.

𝐸𝑟𝑟𝑜𝑟 ≈
1

𝑛
+ 𝑜𝑡ℎ𝑒𝑟 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑡𝑒𝑟𝑚𝑠

In 𝑑-dimensions, this becomes 𝐸𝑟𝑟𝑜𝑟 = 𝑛−1/𝑑 - This means scaling is 𝒚 = −
𝟏

𝒅
𝒙 + 𝑪

Takeaway: flexible ‘nonparametric’ learning has dimension dependent scaling laws.

Intrinsic dimensionality theory of data scaling laws

Some have made the following argument (Bahri 2021)

1. Scaling laws arise due to polynomial rates of learning
1

𝑛𝛼

2. Some argue the slope 𝛼 is closely connected to the intrinsic dimensionality of the data.

But estimators of intrinsic dimension are sketchy, and this is not airtight..

Other data scaling laws

Data scaling thus far: how does dataset size relate to performance?
Related question: how does dataset composition affect performance

❖ Picking optimal data mixture using small scale models

❖ Deciding whether to repeat data or not

❖ Combing the two and balancing quality with repetition rate

Other advanced data scaling law: distribution shift

Data scaling thus far: how does dataset size relate to performance?

Related question: how does dataset composition affect performance

A: Data composition affects the offset, not the slope.

[Kaplan+ 2021]

These ‘distribution shift’ scaling laws can tell us about the importance of collecting diverse data!

[Hashimoto 2021]

Scaling laws under data repetition

In practice, we have finite data – how does repeating examples affect scaling?

D’ = Effective data
Ud = Unique tokens
Rd* = Constant
Rd = Repetition

Data selection scaling and accounting for finiteness

Given that repeated data is less valuable..

Data selection should then be adaptive to scale !

Recap: data scaling laws

❖ Remarkably linear relationship between log-data size and log-error

❖ Holds across domains and models

❖ Theory understanding: similar to generalization bounds: mean estimation example

❖ Applications: data collection / curation

Scaling laws for model engineering

Now for what I promised at the start: model scaling!

Our motivation: how can we efficiently design huge LMs?

• LSTMs vs Transformers

• Adam vs SGD

How should we allocate our limited resources?

• Train models longer vs train bigger models?

• Collect more data vs get more GPUs?

Scaling laws provide a simple procedure to answer these.

Hyperparameter questions

We’ll consider some of these choices in the context of the classic Kaplan scaling paper

• Architecture

• Optimizer

• Aspect ratio / depth

• Batch size

1. Architecture: transformers vs LSTMs

Q: Are transformers better than LSTMs?

Brute force way: spend tens of millions to train a LSTM GPT-3

Scaling law way:

[Kaplan+ 2021]

1. Many architectures

Cross-architecture scaling in Tay et al.

2. Optimizer choice

What about ADAM vs SGD?

[Hestness+ 2017]

(Note, this is in 2017, so pre-transformers. RHN is recurrent highway nets)

3. Depth/Width: Number of layers

Does depth or width make a huge difference?

• 1 vs 2 layers makes a huge difference.
• More layers have diminishing returns below 107 params

3. Depth/Width: But not all parameters are made equal

We’ve been thinking about ‘parameters’ but not all parameters are equal

Embedding layer parameters don’t behave the same!

Related: recent papers on scaling laws for mixtures of experts.

3. Depth/Width: and other Transformer hypers

Do hyperparameters like the aspect ratio depend on scale?

4. Batch size: Critical batch size

Batch size – known to have strong diminishing returns past a certain point.

Critical batch = min number of examples for target loss / min number of steps for target loss

4. Batch size: critical batch size

The smaller the loss target,
The bigger the batch

4. Batch size: selecting the optimal batch

Q: as we increase both compute and model size, how should we scale training?

• Huge batches, same number of steps

• Fixed batches, more steps

Good news for data parallel processing (?)

5. Learning rates: muP and scale-aware LR choices

Yao et al 2024Yang et al 2022

If we naively scale up – optimal learning rate depends on scale.
We need scaling aware initialization and learning rate scaling

Caution – scaling behaviors can differ downstream

Thus far: scaling is predictable and depends mainly on parameters

Catch: downstream scaling can often be much less predictable

Tay et al 2023

Some surprising takeaways

The effect of hyperparameters on big LMs can be predicted before training!

- Optimizer choice

- Model depth

- Architecture choice

The scaling law based design procedure.

1. Train a few smaller models

2. Establish a scaling law (e.g. ADAM vs SGD scaling law)

3. Select optimal hyperparam based on the scaling law prediction.

One important use of scaling laws

Q: Do we need more data or bigger models?

Clearly, lots of data is wasted on small models

Joint data-model scaling laws describe how the two relate

From Rosenfeld+ 2020,
𝐸𝑟𝑟𝑜𝑟 = 𝑛−𝛼 + 𝑚−𝛽 + 𝐶

From Kaplan+ 2020

𝐸𝑟𝑟𝑜𝑟 = 𝑚−𝛼 + 𝑛−1 𝛽

Provides surprisingly good fits to model-data joint error.

Model-data joint scaling is accurate

From Rosenfeld – fit scaling exponents on small data, small models. Predict rest.

Trading off data size and model size: optimize 𝑛−𝛼+𝑚−𝛽 + 𝐶 with your costs.

Compute tradeoffs.

Q: what about other resources? Compute vs performance?

For a fixed compute budget…

Big model that’s undertrained vs small model that’s well trained?

Scaling laws let us navigate this tradeoff

[Kaplan+ 2021] [Brown+ 2020]

Caution – ‘Optimal’ scaling laws are hard to get

Rosenfeld, Kaplan both predict relationship of data, model and perf.

Chinchilla [Hoffman et al] argue these fits are quite off.

Hoffman+ 2022

Main difference – accounting for LR schedules

Chinchilla in depth – 3 methods

The chinchilla authors suggest 3 ways of fitting scaling laws – we’ll go over each.

They mostly (minus method 3) suggest similar constants. More on this later..

Method 1 – minimum over runs.

Similar to the FLOPS figure on Kaplan –
the minimum over the union of all training curves is a power law.

Method 2 - IsoFLOPS

Pick a range of FLOP budgets, vary the total parameter count, take the min over these
convex shapes. The minima form a power law.

Method 3 – Joint fits

Run a bunch of models on the size-data grid. Use least squares to fit a joint scaling law

Fun addendum – errors in chinchilla method 3

Note that this method three was likely flawed in the original paper. Some authors did
data forensics, recovered the raw data, and re-did the fit and got results more
consistent with methods 1 and 2

[Besiroglu et al 2024]

Important note – train-optimal may not be what you want

Chinchilla aims to tell you what gives the best model for fixed training compute..

 But most of the compute in a real deployment is inference.. So we should ‘over’ train

• GPT3 – 2 tokens / param

• Chinchilla – 20 tokens / param

• LLaMA65B – 22 tokens / param

• Llama 2 70B – 29 tokens / param

• Mistral 7B – 110 tokens / param

• Llama 3 70B – 215 tokens / param

The more usage we expect, the more it becomes worth it to pay the upfront cost

Recent example for different (diffusion) models

Gulrajani+ 2023.

Methods like IsoFLOPS are pretty easy to execute, and our group has replicated these results

Scaling laws for models and compute

Log-linearity extends to model parameters and compute!

Lets us set the following based on small models

- Pick optimizer

- Pick architecture and model sizes

Also lets us make smart resource tradeoffs

- Big models vs more data?

Recap: scaling laws – surprising and useful!

- Data scaling: understand how data affects models, clean theory

- Model scaling: dramatically reduce costs for training

- Scaling as prediction: understand what problems can be ‘brute forced’

	Slide 1: Lecture 9
	Slide 2: Taking scaling seriously
	Slide 3: Scaling isn’t easy
	Slide 4: Today: simple, predictive ‘laws’ for behaviors of LMs
	Slide 5: Part 1. Scaling laws, history and background.
	Slide 6: Sample complexity and rates
	Slide 7: Earliest (data) scaling law paper – 1993
	Slide 8: Early history of scaling laws – data scaling
	Slide 9: Early history of scaling laws – data scaling
	Slide 10: Hestness et al 2017
	Slide 11: Hestness II
	Slide 12: Part 2. Neural (LLM) scaling behaviors
	Slide 13: Scaling laws – power law relationships for many factors
	Slide 14: Data vs performance
	Slide 15: Data scaling laws for language models
	Slide 16: Conceptual foundations of data scaling laws.
	Slide 17: Toy example: mean estimation
	Slide 18: Scaling law exponents: an intriguing mystery
	Slide 19: Detour: scaling laws for (nonparametric) learning
	Slide 20: Intrinsic dimensionality theory of data scaling laws
	Slide 21: Other data scaling laws
	Slide 22: Other advanced data scaling law: distribution shift
	Slide 23: Scaling laws under data repetition
	Slide 24: Data selection scaling and accounting for finiteness
	Slide 25: Recap: data scaling laws
	Slide 26: Scaling laws for model engineering
	Slide 27: Hyperparameter questions
	Slide 28: 1. Architecture: transformers vs LSTMs
	Slide 29: 1. Many architectures
	Slide 30: 2. Optimizer choice
	Slide 31: 3. Depth/Width: Number of layers
	Slide 32: 3. Depth/Width: But not all parameters are made equal
	Slide 33: 3. Depth/Width: and other Transformer hypers
	Slide 34: 4. Batch size: Critical batch size
	Slide 35: 4. Batch size: critical batch size
	Slide 36: 4. Batch size: selecting the optimal batch
	Slide 37: 5. Learning rates: muP and scale-aware LR choices
	Slide 38: Caution – scaling behaviors can differ downstream
	Slide 39: Some surprising takeaways
	Slide 40: One important use of scaling laws
	Slide 41: Model-data joint scaling is accurate
	Slide 42: Compute tradeoffs.
	Slide 43: Caution – ‘Optimal’ scaling laws are hard to get
	Slide 44: Main difference – accounting for LR schedules
	Slide 45: Chinchilla in depth – 3 methods
	Slide 46: Method 1 – minimum over runs.
	Slide 47: Method 2 - IsoFLOPS
	Slide 48: Method 3 – Joint fits
	Slide 49: Fun addendum – errors in chinchilla method 3
	Slide 50: Important note – train-optimal may not be what you want
	Slide 51: Recent example for different (diffusion) models
	Slide 52: Scaling laws for models and compute
	Slide 53: Recap: scaling laws – surprising and useful!

