Lecture 9

SCALING LAWS - BASICS

CS336

Taking scaling seriously

Imagine the following scenario..

Your friend has given you ten thousand H100s for a month,
and asked you to build a good open source LM.

What do you do?

* Puttogether yourinfra team and distributed training framework (A2)
* Puttogether a great pretraining dataset (A4)

* Run a big model (but which one??) <- we are here.

Wide or deep? How many heads? Which nonlinearity?

Original transformer 2 37000 | LayerNorm Serial Sine.

GPT cdn.openai.com 40257 | LayerNorm Serial Absolute

B OO

GPT2 cdn.openai.com 2 50257 | LayerNorm Serial Sine.

T5 (11B) arxiv.org SentencePiece RMSNorm Serial Relative
GPT3 (1758B) arxiv.org 2 BPE 5025 LayerNorm Serial
mTs anxiv.org SentencePiece 250000 RMSNorm Serial Relative
T5 (XXL 11B) v1.1 i github.com SentencePiece 2128 RMSNorm Serial Relative
Gopher (2808) anxiv.org SentencePiece RMSNorm Serial Relative
Anthropic LM (not claude) anxiv.org BPE
LaMDA arxiv.org BPE Relative GeGLU
GPTJ i huggingface.co 2 BPE LayerNorm Parallel RoPE GelU
Chinchilla arxiv.org SentencePie RMSNorm Serial Relative ReLU
PalLM (5408) arxiv.org SentencePiece RMSNorm Parallel RoPE SwiGLU
OPT (1758B) arxiv.org BPE LayerNorm Serial Absolute RelU
BLOOM (175B) arxiv.org 2 BPE L LayerNorm Serial AliBi GelU
GPT-NeoX arxiv.org 50257 | LayerNorm Parallel RoPE GelU
GPT4 L a g 100000

LLaMA (658) arxiv.org, 32000 RMSNorm SwiGLU

v
v
v
v
v
v
v
v
v
v
v
v
v
O
]
v

LLaMA2 (708B) arxiy 2 RMSNorm SwiGLU

1 (o o o o e e f e o s e o

Mistral (7B) arxiv.org RMSNorm

<

SwiGLU

We could cargo cult things from existing LMs... but how do these get optimized in the first place?

Today: simple, predictive ‘laws’ for behaviors of LMs

The approach -
scaling laws which are simple, predictive rules for model performance

Old and unpleasant: tune hyperparameters on big models
New (over?) optimism: tune on small models, extrapolate to large ones

—— 1 Layer
—=— 32 Layers
s 3] —— 3 Layers
—=— § Layers
10 +— =6 Layers
________ L=2.57-C~0048 2 . - - - . . .
3 T 10° 104 10° 105 107 0% 107

- -2 0 2
10 10 10 10 10 10 ;
Compute (PetaFLOP/s-days) Parameters (non-embedding)

Test Loss
=

Validation Loss
)
Parameters

Part 1. Scaling laws, history and background.

¢ Data scaling as empirical sample complexities

¢ Initial forays into understanding neural scaling with data

Sample complexity and rates

Theorists have thought about ‘scaling’ for a long time..

e(h) < (minpep e(h)) + 2\/% log %

(learning in a finite set of k hypotheses)

Under the assumptions of Theorem 1.5, the rate of convergence of the estimator
8

Dn(xo) is ¥, =n~ 2271 which means that for a finite constant C' and for all n > 1 we

have

sup B, |(pu(wo) — plao))?] < CY2.
peP(B,L)

(generative modeling for smooth densities)

But these are upper bounds, not actual, realized loss values.

Hall, 1989

https://www.cs.cmu.edu/~epxing/Class/10701/slides/lecture16-VC.pdf

Earliest (data) scaling law paper - 1993

Learning Curves: Asymptotic Values and

Rate of Convergence

Corinna Cortes, L. D. Jackel, Sara A. Solla, Vladimir Vapnik,

and John S. Denker
AT&T Bell Laboratories
Holmdel, NJ 07733

Abstract

Training classifiers on large databases is computationally demand-
ing. It is desirable to develop efficient procedures for a reliable
prediction of a classifier’s suitability for implementing a given task,
so that resources can be assigned to the most promising candidates
or freed for exploring new classifier candidates. We propose such
a practical and principled predictive method. Practical because it
avoids the costly procedure of training poor classifiers on the whole
training set, and principled because of its theoretical foundation.
The effectiveness of the proposed procedure is demonstrated for
both single- and multi-layer networks.

A typical example of learning curves is shown in Fig. 2. The test error is always
larger than the training error, but asymptotically they reach a common value, a.
We model the errors for large sizes of the training set as power-law decays to the

0.25
02

0.15
0.1

0.05

b ¢
Ctest =a+ 5 and Etrain = ¢~ 75

error
& — points used for prediction

===« predicted learning curves

lest error

::x::;z::]]

f training error

15360
training set size, /

2560 7680

Test Aocuracy
=
=
W

—g—Memory-Dagsed

W inn W
—#—Perceptron

—a—Haive Bayes

0.1 1 10 oo o000
Millicns of Words

Figure 1. Learning Curves for Confusion Set
Disambiguation

Early history of scaling laws - data scaling

these results suggest that we may want to
reconsider the trade-off between spending time
and money on algorithm development versus
spending it on corpus development. At least for
the problem of confusable disambiguation, none
of the learners tested is close to asymptoting in
performance at the training corpus size
commonly employed by the field.

Log-linear scaling with data [Banko and Brill ‘01]

Early history of scaling laws - data scaling

Curve Fit using Recursive least squares

0.22
Model Formula
R e Exps y=c—e th
Exp4 y=c—e 9" tb
3 ExpP3 y=c—e@b)"
g : Observed values | | POW3 Yy==c— am_a
E Observed curve .
Exp3 ' Powy | y=c— (—azx+0b)"®
Exp4
- ExpP3 | | ILogo y=c— (a/logx)
Pow3
- Powd
K --- lLog2

Table 1: Curve families.

0 200000 400000 600000 800000 1000000 1200000
Training sample size

Early tests of functional forms
Kolachina et al 2012 - power law relation between data and downstream performance

Hestness et al 2017

067 —— 208 Hidden o — Token Error Rate Small IData Power-law Region Irreducible
: —— 512 Hidden) -~ Token Error Rate Trend T Region Error
0.62 --- 208 H!dden'l'rend 0.65 - Reglon
@ == 512 Hidden Trend @ 8 | Best Guess Error
3 o8 g os0 013 2 N
g Ex08(m) = 41.2 MO + 0.39 s &(m) = 3.87 m® 8
2 054 20 3
g F :
051 5 050 t
i i I
E £ 0.46 p
2048 2 5
E £512(m) = 21.5 m?3° + 0.32 £ 0.42 =]
204 = R
0.39 . S
0.41 e]
0.36 N e
(7] _
220 221 222 21] 22‘ 225 225 211 2]9 270 22] 22? 12] 2?4 225 215 217 (D
Training Data Set Size, Number of Tokens (Log-scale) Training Data Set Size, Number of Tokens (Log-scale) Irreducible Error

Training Data Set Size (Log-scale)

Figure 1: Neural machine translation learning curves. Left: the learning curves for separate models
follow £(m) = amPs + ~. Right: composite learning curve of best-fit model at each data set size.

Earliest ‘large scale neural’ scaling work: Hestness 2017
Predictable scaling on many tasks (MT, LM, Speech) and hypothesized scaling shape.

Hestnhess ||

Very ahead of its time..

“Emergence”

Scaling by compute

Speed = accuracy

Although small data set testing may be possible, it can be difficult to ensure that training data is large
enough to see the power-law learning curve region. We have found that models with poor optimizer
parameterization or model priors/initialization show accuracy cliffs, where accuracy is only as good
as best guessing, but the model trains on enough data to be in the power-law region. Researchers
must take great care when defining a "large enough" training set for small data testing. We leave the
methodology for defining such a training set to future work.

Computational Limits: If we have identified a desirable model to scale to larger training sets, the
next potential limitation is the speed of computation. In some cases, training large models on very
large data sets would take months or years of critical path compute time, making these training
runs impractical for any real world problem on existing systems. However, predictable learning
and model size curves may offer a way to project the compute requirements to reach a particular
accuracy level. The compute requirements could inform decisions about how to scale computational
capacity to unlock these compute-limited applications.

The Performance-Accuracy Trade-off: Many DL software and hardware techniques impose a
trade-off between model accuracy and the speed of computation. Learning curves and model size
growth can indicate whether these techniques could regain lost accuracy by improving the speed of
computation. For example, low-precision computation/quantization and sparse models give up some
model accuracy (e.g., up to 20%) in order to improve compute throughput. If the compute throughput
improvements allow DL developers to train larger models on larger data sets, these accuracy losses
might be easily recoverable.

Part 2. Neural (LLM) scaling behaviors

1.Data vs performance
“Are there simple rules that determine how data affects
performance?”

2. Data vs model size
Do we train on more data or bigger models?

3. Hyper-parameters vs performance
“How should we set hyperparameters on the big model??”

Scaling laws - power law relationships for many factors

These scaling laws hold on many different kind of phenomena!

Ty 4.2
" \ovie\, —— L=(Dj5.4-103)~0.095 5.6 — =(~,8.8'1°n)-o'°76
; 3.9 48
§ 3.6 4.0
phe I
§ 3.3 32
=3
3.0
24
-= L= (Cpin/2.3 + 108)~0.050
2 - 2.7
io™® 1077 107 107 107 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

—e— WebText2 (Test)
~e— Internet Books
~e— Books

—— Wikipedia
~+— Common Crawl

They even hold in non-standard ¢
settings (when train # test) ¢

104 10° 106 107 108 10?
Parameters (non-embedding)
[Kaplan+2020]

Data vs performance

What’s a data scaling law?

Data scaling laws : simple formula that maps dataset size (n) to error

What do we expect out of scaling laws?

Monotonic, logistic-
like curves

Generalization Error (Log-scale)

Small Data . Irreducible
Region Power-law Region Error
Region
Best Guess Error
=]

Irreducible Error

Training Data Set Size (Log-scale)

[Hestness+ 2017]

Data scaling laws for language models

First, an empirical observation

3.9

Test Loss

3.0

—— L=(D/5.4-1013)70.0%

3.6

3.3

2.74

Dataset Size

Loss and dataset size is linear on a log-log plot

4.2 1

“Scale-free” or
“Power law”

(For language modeling, from Kaplan+ 2020)

Conceptual foundations of data scaling laws.

[Q: Why do scaling laws show up?] Swatoats | oo | imeduchle
% Region 9 Riggn
g': BestGEE_m;r\
We know error should be monotone —_— g \
But why is it a power law / linear in log-log? : e
Training Data Set Size (Log-scale)
[A (?): Estimation error naturally decays polynomially.]

But this answer may take a moment to understand. Let’s work through an example.

Example: If our task is to estimate the mean of a dataset, what’s the scaling law?

Toy example: mean estimation

Input: x; ...x,, ~ N(u,0?)

Task: estimate the averageas ji = %

What’s the error? By standard arguments..

g2

E[(2—w?] ==

n

This is a ‘scaling law’
log(Error) = —logn + 2logo

More generally, any polynomial rate 1/n% is a scaling law

Scaling law exponents: an intriguing mystery

Fact: Similar arguments show most ‘classical’ models (regression, etc) have% scaling

This means we shouldseey = —x + C
What do we find in neural scaling laws?

—— Token Error Rate
4.2

0.71 — 0.78 — ps2
Thken Srior Rate Trend — Attention —— L=(D/5.4:10'3)70.0%
_ 065 S o6t - ps2Trend 39
2 060 ® --~ Attention Trend ’
E\ - g(m) = 3.87 m?3 éu“ 3.6
S 055 037 .
g 3 = = -0.30
é 050 g o \\z{m) 1.36m 23
£ 0.46 % 0.23
£ 0.42 3 £(m) = 0.95 m?* 3.0
H 508 ;
0.39 Fae E 014 T B
R S 2.7
036 T 0.11 \‘_ 103 109
2ie 220 2% 202 223) 255 296 247
Training Data Set Size, Number of Tokens (Log-scale) 8 16 32 64 128 256 512 1024 2048 H
" l “ Training Data Set Size, Hours of Audio (Log-scale) Dataset 3|ze
tokens
Machine translation Speech Language modeling

Very different from predictions.. Why might this be?

Detour: scaling laws for (nonparametric) learning

Neural nets can approximate arbitrary functions. Lets turn that into an example.

Input: x; ... x,, uniform in 2D unit box. y; = f(x;) + N(0,1)

Task: estimate f(x)
1

Approach: cut up the 2D space into boxes with length n 4

What’s our estimation error?
Informally, we have v/n boxes, each box gets/n samples.

1
Error ~ — + (other smoothness terms)

Vn

In d-dimensions, this becomes Error = n=/% - This means scalingis y = —%x +C

Takeaway: flexible ‘nonparametric’ learning has dimension dependent scaling laws.

Intrinsic dimensionality theory of data scaling laws

Some have made the following argument (Bahri 2021)

1. Scalinglaws arise due to polynomial rates of learningn—la

2. Some argue the slope «a is closely connected to the intrinsic dimensionality of the data.

25

20

15+

4lap

10 A

® Teacher-Student
® CIFAR-10

But estimators of intrinsic dimension are sketchy, and this is not airtight..

———- 4Jap

-- 2lap

2 4 6 8 10 12 14 16 18 20 22 24 26
Dimension

® CIFAR-100

® SVHN MNIST

© FashionMNIST

Other data scaling laws

Data scaling thus far: how does dataset size relate to performance?
Related question: how does dataset composition affect performance

¢ Picking optimal data mixture using small scale models
¢ Deciding whether to repeat data or not

% Combing the two and balancing quality with repetition rate

Other advanced data scaling law: distribution shift

Data scaling thus far: how does dataset size relate to performance?
Related question: how does dataset composition affect performance

A: Data composition affects the offset, not the slope.

—e— WebText2 (Test)
—o— Internet Books
—e— Books

—e— Wikipedia
—e— Common Crawl

> o o 3

Test Loss

w

[Kaplan+2021]

104 105 106 107 108 109
Parameters (non-embedding)

These ‘distribution shift’ scaling laws can tell us about the importance of collecting diverse data!

Excess error

100 A

102 A

Expected error intercept

q
— 0.00 41
— 022
—— 056 R
~—

e i 00 02 04 06 08 10 .
" - Data source proportion [HaShl moto 202].]

Training data size

Log C(q)

Scaling laws under data repetition

In practice, we have finite data - how does repeating examples affect scaling?

Final test loss

Return on compute when repeating

3.4
3.2
3.0
2.8
2.6
2.4
22{Upto=4 epochs Rapidly dlmlmshmgw
repeating is almost - returns for \ At = D
50 as good as new data | more repetitions irep DaM ng
’ 12B 488 120B 480B 1.2T
(1) (4) (10) (40) (100)
Tokens
(Epochs)

* ok

Models trained
Loss assuming repeated data is worth the same as new data
Loss predicted by our data-constrained scaling laws

D' = UD—I—UDRD(l—eR

Allocating compute when repeating
'~
o 1022 FLOPs
~

8.67B
6.34B

Parameters

1788 242B
(7.1) (9.7)

Tokens
(Epochs)
= = Regime of same compute (IsoFLOP)

—— Efficient frontier assuming repeated data is worth the same as new data
mmms Efficient frontier predicted by our data-constrained scaling laws

= Effective data
—BRp Ud = Unique tokens
) Rd* = Constant

Rd = Repetition

Data selection scaling and accounting for finiteness

Given that repeated data is less valuable..

Data selection should then be adaptive to scale!

Estimated Scaling Curves

Lower Utility of Repeated Data 3 o 0.954 B Actual
Epoch 1 B =5 B = Estimated
Epoch 1 Epoch 2 Epoch 3 Ta bl] :
N\ & — » t% = E 0:90 Large Compute:
0 L] ‘ ‘ ' EESEnZ 8 T 0.85 1 i Less aggressive
g 8 ' 2 . : filtering is best
o o [o : Medium Compute: :
*E g l l l £ 0.80 1 : Mildly aggressive :
a a ' l g b Efiltering is best :
F 2 k=] n | small Compute: :
= 3 ' (] I w 0.75 Highly aggressive
S S |) = X filtering is best
o o < L K X X _" L 0.701
o @ 7}
2 . z |
3 B 3 c l Pool 1 %l % 0.654 == Bucket E only
‘) vis 51 > =« E+D (Pool1)
- D Pool 2 = £ 0.60{ = 4 E+D+C (Pool 2)
A\ : omomm e — 4 = E+D+C+A
Web Data is Non- Quality-Quantity Tradeoff Best Data Pool Changes 102 103

Homogenous (QQT) for Data Filtering with Total Compute Millions of Total Training Samples Seen

Recap: data scaling laws

Remarkably linear relationship between log-data size and log-error

Holds across domains and models

Theory understanding: similar to generalization bounds: mean estimation example

Applications: data collection / curation

Scaling laws for model engineering

Now for what | promised at the start: model scaling!

Our motivation: how can we efficiently design huge LMs?
 LSTMs vs Transformers
* Adamvs SGD

How should we allocate our limited resources?
* Train models longer vs train bigger models?
* Collect more data vs get more GPUs?

Scaling laws provide a simple procedure to answer these.

Hyperparameter questions

We’ll consider some of these choices in the context of the classic Kaplan scaling paper

Architecture

Optimizer

Aspect ratio / depth

Batch size

1. Architecture: transformers vs LSTMs

Q: Are transformers better than LSTMs?
Brute force way: spend tens of millions to train a LSTM GPT-3

Scaling law way:

Test Loss 5.4

4.8

4.2 LSTMs

3.6
1 Layer
2 Layers

3.0 Transformers 4 Layers

2.4

105 106 107 108 100
Parameters (non-embedding) [Ka P lan+ 202 l]

1. Many architectures o

Log-Perplexity

atve

Neg:

Twemizin sabm s Le ashnmmen
FLOPS

(d) Funnel

Negative Log-Perplesity

XU 14
-1.4- e " »
Lu3e 04"s : 3 g £
@ g g ™
‘?u Mini Alpert Large £ o &
olved 38 g o L 5‘ g
-1.6- 3 Euy ™ £
o £, £, L
LConv 38 - -
-1.8- ;) tcon
Ll v R T T T T T T ey Ciema sanz e iaen 3sen e Tieeman da m I8R5 3 TeEe
3 O sueen 45N evo m' [o B 40 ODCO o § FLOPS FLOPS Flops
P ‘&ls
> o) Qe 2,‘ e (a) ALBERT (b) DConv (¢) Evolved
_Q-Z.O A o, vm-lmv N
(O] Q DConv Small ILP Mixer 38
o o mggzgv:;; il oo 1o
L s s -
222 o, OF Giem g 9O S
;') Qom0 Qg :
e Albert NL24 |
sae 7 © s wias H
R L e - - o b
© %Aluﬂ vz © sedarmer smar 2.
> (R
2.6 P rmerroy P O i I T TR O ; TRT - g T
e A
(e) Transformer-GLU (f) LConv (g) MLP Mixer
T Tiny © e nzs .
. . . N .
o [P,
O wretnis e s e
3 Small g, 'E“
-3.0 T T T T T T 1 § Performar Larg 5 ‘.!“
1.1e+12.2e+12 4.4e+12 8.8e+12 1.8e+13 3.5e+13 7.0e+1B.de+14 g g‘ g
Eauy g T
FLOPS H i, .

Cross-architecture scaling in

Hormer Tiny

Ll i meed D amenieen
FLOPS

(i) Performer

Tay et al.

T

(j) Switch Transformer

Viemie G e LR M M
FloPS

(h) MoS Transformer

x

TR e aeen taen senree
RLOPS

(k) Universal Transformer

2. Optimizer choice

What about ADAM vs SGD?

N\ == Depth-10 RHNs, SGD
1.59
N ——— Depth-10 RHNs, Adam
—== Depth-10 RHNs, SGD Trend
147 N -—- Depth-10 RHNs, Adam Trend |
\\\
1.36 X

1.26 1

1.17 1

1.08 1

1.00 A

Minimum Validation Loss (Log-scale)

0.93 - » i ~ i SOt
g(m) = 5.25 m00%3 7~

0.86

25.9 2'21 2:7.3 2'25 2'27

Training Data Set Size, Number of Chars (Log-scale) [H eStneSS+ 20 17]

(Note, this isin 2017, so pre-transformers. RHN is recurrent highway nets)

3. Depth/Width: Number of layers

Does depth or width make a huge difference?

Test Loss

7

. O

1=

W

—e— 1 Layer
—— 2 Layers
—e— 3 Layers
—=— 6 Layers
> 6 Layers

—_—

104 105 108 107 108 109

Parameters (non-embedding)

103

* 1vs2layers makes a huge difference.
* More layers have diminishing returns below 107 params

3. Depth/Width: But not all parameters are made equal

We’ve been thinking about ‘parameters’ but not all parameters are equal

7 7
6 6
5 5
4 —— () Layer 2
Sa Y Sa
2 —s— 1 Layer . —— 1 Layer
& | —— 2 Layers & | —— 2 Llayers
31 —— 3 Layers 3] —— 3 Layers
—=— 6 Layers —=— 6 Layers
+— >6 Layers > 6 Layers N
2 . . " T 2 e " r v r . "
106 107 108 10° 108 10% 105 10% 107 108 107
Parameters (with embedding) Parameters (non-embedding)

Embedding layer parameters don’t behave the same!

Related: recent papers on scaling laws for mixtures of experts.

3. Depth/Width: and other Transformer hypers

Do hyperparameters like the aspect ratio depend on scale?

Loss Increase
N B s3] @ 5
2 828 =2 =2 ¥

o
ES

—#— Npeag =8
—*— dmodellMhead = 64

—e— 50M Params
—— 274M Params
—+— 1.5B Params

A wide range of architectures
achieve similar performance

—8— dmodel = 256
—— dmodel = 512
—¥— dmodel = 1024

I 22% additional compute
compensates for 1% loss increase

.‘hﬁ_ﬁ.ﬁ

10° 10!
Feed-Forward Ratio (dt / dmode)
50M Parameters

10! 10% 108

Aspect Ratio (dmodel / nlayer)

10t 102
Attention Head Dimension (dmodel / Nhead)
25M Parameters

Figure S Performance depends very mildly on model shape when the total number of non-embedding
parameters NNV is held fixed. The loss varies only a few percent over a wide range of shapes. Small differences
in parameter counts are compensated for by using the fit to L(V) as a baseline. Aspect ratio in particular can
vary by a factor of 40 while only slightly impacting performance; an (Njayer; @model) = (6,4288) reaches a
loss within 3% of the (48, 1600) model used in [RWC™*19].

4, Batch size: Critical batch size

B Smaller batch Predicted Training Speed
I
m Larger batch 100 |
<]
E \
=] : Ineffective
o~ : scaling
—1 . I
4]
S - Perfect |
l scaling |
I -
102 107! 10° 10! 10?

Batch Size / Noise Scale (B/B)

Batch size - known to have strong diminishing returns past a certain point.

Critical batch = min number of examples for target loss / min number of steps for target loss

4. Batch size: critical batch size

Critical Batch Size vs. Performance

) P
8 //”/
2 106 - .
o
)] o’
N
N 105'_ — “
rq] -7 o ® .-..g
% : 01‘ 9 ‘-.-‘
M 104 o « *#44" —— Empirical Beri, N = 3M
i ; e —e— Empirical Bit, N = 85M
.3 k% cee= Beir=2.1x 108 tokens-L—%8
g i N’ Noise Scale Measurement
© 103 : S . .
101 6 x 100 4%x109 3x10°
WebText2 Train Loss
The smaller the loss target C ..
§€L, Chin(C) = (minimum compute, at B < B.)

The bigger the batch

1 + B/Bcrit (L)

4. Batch size:

Q: as we increase both compute and model size, how should we scale training?

selecting the optimal batch

* Huge batches, same number of steps
* Fixed batches, more steps

Steps

—e— Spin (adjusted)
150009 —--- Senin = (5.4+103) - C2.03
—s— S (fixed-batch)

min

10000

5000 -

1077 1075 1073 107!
Compute (PF-days), excluding embeddings

Good news for data parallel processing (?)

7.0
6.5
n 6.0
=55
£ 5.0
Eas
4.0
3.5

Width

5. Learning rates: muP and scale-aware LR choices

Standard Practice Our Work

128
256
512
1024
2048 N= N T
4096 Af

8192 optimum shifts

optimum stable ==

—-12 -10 -20 -18 -16 -—-14 -—-12 -10
logzLearningRate

-18 -16 -—14

logaLearningRate

Yang et al 2022

Table 2. 4P function for a model M’ that is r times the widths
of M. If a parameter tensor has 2 dimensions that goes infinite
when the model width goes infinite, it is “matrix-like” (e.g., a
fully-connected hidden layer); if the number is 1 or 0, it belongs
to the “others” class. Note that embedding layers are “others”.
“Output” means the layer that maps an infinite dimension to a
finite dimension, which is the word decoding layer (Im_head) in
Transformers. A multiplier is a constant multiplied by a parameter
tensor, which has a similar function to softmax temperature.

Hyperparameter (weight) M M ~r
AdamW learning rate (matrix-like) | [l/r
AdamW learning rate (others) l l
Initialization variance (matrix-like) | o afr
Initialization variance (others) o o
Multiplier (output) T T/r
Multiplier (others) T T

Yao et al 2024

If we naively scale up - optimal learning rate depends on scale.
We need scaling aware initialization and learning rate scaling

Caution - scaling behaviors can differ downstream

Thus far: scaling is predictable and depends mainly on parameters
Catch: downstream scaling can often be much less predictable

-1.35+

80+ A
OnL12 NL32-XL
-1.40- 794
EANLG-XXXL
2145 A 78 O OnL12-
F NL12-XXL >
S D S77-
q_f1.50- CInLgoxRiL32-XL 9 A
2 ONL6-xxL < 5 NL12-XXL
S) rU32-LG
@-1.55- 3 N La
= Q0 NL36 Cnis-xxL
= NL32-LG g 7. EPNLE-XXXL
= v
9 1.60 AV 3 AnL24 NL8-XL
= O arddl8-XL)
ONL36 N o
165 P32 NL6-XXL
A 73,
NL24 NL32
-1.70 T T T T T 1
2.7e+8 5.4e+8 1.1e+9 2.1e+9 4.3e+9 8.6e+9 1.7e+10 72 . . . r T 1
Params 2.7e+8 S.4e+8 1.1e+9 2.1e+9 4.3e+9 B.6e+9 1.7e+10 Tay etal 2023

Params

Some surprising takeaways

/ The effect of hyperparameters on big LMs can be predicted before training! \

- Optimizer choice
- Model depth
- Architecture choice

- /

The scaling law based design procedure.
1. Train a few smaller models
2. Establish a scaling law (e.g. ADAM vs SGD scaling law)
3. Select optimal hyperparam based on the scaling law prediction.

Loss vs Model and Dataset Size

One important use of scaling laws

-

Bl [
. 4.0 "'_""'-'.}'.'---.. ’ :
Q: Do we need more data or bigger models? B A

235 g
5 K- s. e .

. 3.0 f e
Clearly, lots of data is wasted on small models " -
2.5)
107 108 10° 1010

Tokens in Dataset

Joint data-model scaling laws describe how the two relate

From Rosenfeld+ 2020,
Error=n"%+m F +C

From Kaplan+2020
Error = [m~%* + n~1]#

Provides surprisingly good fits to model-data joint error.

(a) Wikil03 error (cross entropy) landscape.

log10(err)

TOEM
J02M
B5M
as
25M
393.2K

Model-data joint scaling is accurate

From Rosenfeld - fit scaling exponents on small data, small models. Predict rest.

model fraction: log2(m/M)

cO0Ceo0@®
21000000
-11000000
10000000
810000000
-010000000
- 210000000

—6-5-4-3-2-1 0
data fraction: log2(n/N)

(a) Ilustration.

estimated topl error

109 o fit
e extrapolated

1 H:-4.5%
087 5.4.681%
0.6
0.4 1
0.2 A

model fraction 1/16
0.0 data fraction 1/8
0.0 0.2 0.4 0.6 0.8 1.0

measured topl error

(b) Extrapolation on ImageNet

7.01 o fit
[]
6.5 extrapolated
H:0.5%
] 0:1.689%

o
=)

b
n

estimated test loss
& U
w o

by
=}

w
n

model fraction 1/16
data fraction 1/8

w
=)
!

3 4 5 6 7
measured test loss

(c) Extrapolation on WikiText-103.

Trading off data size and model size: optimize n=*+m~™F + C with your costs.

Compute tradeoffs.

Q: what about other resources? Compute vs performance?

For a fixed compute budget...
Big model that’s undertrained vs small model that’s well trained?

-10

Performance vs Compute Budget

8
Z 10 "
6 1071
@ 5 @ g 10° 2
- © 8 10 &
- 103 &' s &
~ 3 5G4 10’
6
105 w
5 ~ L=2.57-C-0048)
. . . 15 10
104 108 108 10° 10* 107 10 10° 10° Brown+ 2020
[Kap lan+ 2021] Compute (PetaFLOP/s-days) []

Parameters (non-embedding)

Scaling laws let us navigate this tradeoff

Caution - ‘Optimal’ scaling laws are hard to get

Rosenfeld, Kaplan both predict relationship of data, model and perf.

Chinchilla [Hoffman et al] argue these fits are quite off.

Parameters

1T

100B

10B

1021
FLOPs

1023

1025

—— Approach 1
—— Approach 2
—— Approach 3

- Kaplan et al (2020)

Chinchilla (70B)

Gopher (280B)

GPT-3 (1758B)
Megatron-Turing NLG (530B)

Hoffman+ 2022

Main difference - accounting for LR schedules

b o o g
ES E @ =

Learning Rate/Max LR

e
¥

o
o

o e e [y
S = @ o

Learning Rate/Max LR

e
]

e
o

2 4 6
Million Sequences

0.0

25

50 7.5 100
Million Sequences

12.5

3.00 3.201
Cosine Cycle Length
2.95 3.151 _ 12)(num. steps
3101 —— 1.1x num. steps
" 2.00 —— 1.25x% num. steps
g " 3.054 —— 1.5x% num. steps
EI\ o —— 2.0x num. steps
g 2.85 :rl 3.001 —— 5.0% num. steps
= [¥]
[2.951 %
= 2.80
2.904
2.75
2.85
27075 2 4 6 28077 2 4 6
Million Sequences Million Sequences
3.00 3.201
3.154
2.95
3.104
w 2.90
w 4
k! P 3.05
2285 3 3.00
c 3
c 2,954
F2.80
2.904
2.75
2.851
210 25 s 75 100 125 %00 25 so 75 100 135

Million Sequences

Million Sequences

Chinchilla in depth - 3 methods

Approach Coeff. a where N,p, «c C* Coeff. b where D,p, o cP
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

The chinchilla authors suggest 3 ways of fitting scaling laws - we’ll go over each.
They mostly (minus method 3) suggest similar constants. More on this later..

Method 1 - minimum over runs.

Similar to the FLOPS figure on Kaplan -
the minimum over the union of all training curves is a power law.

6.0 NN 1T 15T
55 NI 1012
5.0
1008B &78
4.5
a 0 1 fl”
840 5 w10 Gor??
=) @ 108 - S 1
£ 35 £ I < o
= g - 4
© © > f 1010 3
S & 108 % /'g"
W .
2.5 o & % .
;‘.-/7 sl A
100M _HFe 107 5%
2.0
107 108 10 102 102! 102 1077 1010 102 103 10% 1077 1019 102 1023 10%
FLOPS FLOPs FLOPs

Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 1023).

Method 2 - IsoFLOPS

Pick a range of FLOP budgets, vary the total parameter count, take the min over these
convex shapes. The minima form a power law.

10T

3.0 T
\qa” 1008 ¢35
w0 AN ’/ l,')/' .
w238 6e18 w
8 o M ege® 5 » 1008 .
o lel9 - R o c
o) @ 10B 5 rsd
26 @ 3el9 W % ‘, < @
c M L - .
§ e celd \ 5 %® F 108 o
Foy g, —® 1e20 S % 1B e [
—8— 3e20 ° e
—e— 6e20 J & 18|
22 ¢ 1e21 100M "
—o— 3e2l
2.0 100M
100M 300M 1B 3B 6B 308 10V 101 102 1073 1025 1017 1019 1021 1023 102
Parameters FLOPs FLOPs

Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

Method 3 - Joint fits

Run a bunch of models on the size-data grid. Use least squares to fit ajoint scaling law

1008 IsoLoss contours

40B

10B

Model size
=]
@

10 10t 1020 108 10%

Training FLOPs

—— Efficient frontier
100M \‘\\ e Empirical data
IsoFLOPs slice
_;

1023 Gopher
budget

5.00

4.00

(%]
& 3.00
-

2.00

IsoFLOPs slices

v
7
o //
/ .
/ /
/0 Train. FLOPs
7/ / v
® I // // 6e+18
W R4 ///, -== le+19
&1 111l 2 S0 == 3e+19
oull | | ool || L 4]l |-=- ee+10
[N\ 7
;.%2.,/ LR | === 1e+20
?\\\\\ ..J,”:’/ /’,/’: ——= 38420
SRy [l o s
Jssle e L1 ==
NS 21, IR le+21
SOSs8 9300~ .-
MNORER o ol tlll |7 3e+22
‘\\~‘~-Oov‘. —-—- Gopher
\\\~~
100M 1B 10B 40B
Model size

Figure 4 | Parametric fit. We fit a parametric modelling of the loss £(N, D) and display contour (left)
and isoFLOP slices (right). For each isoFLOP slice, we include a corresponding dashed line in the left
plot. In the left plot, we show the efficient frontier in blue, which is a line in log-log space. Specifically,
the curve goes through each iso-loss contour at the point with the fewest FLOPs. We project the
optimal model size given the Gopher FLOP budget to be 40B parameters.

Fun addendum - errors in chinchilla method 3

Note that this method three was likely flawed in the original paper. Some authors did
data forensics, recovered the raw data, and re-did the fit and got results more
consistent with methods 1 and 2

0.15 4 'r% - QOptimal policy (ours)
' = Optimal policy (Hoffmann et al.)
£ 100+ Chinchilla model
0.10 1 0
@ g
T 0.05 ©
3 ;
2 o
wn (]
& 0.00 &
c
9
—0.05 8
E 10 A
—0.10 =
T T Q
Hoffmann et al. Ours o

10% 102 1023 102 1077
Training compute (FLOP)

[Besiroglu et al 2024]

Important note - train-optimal may not be what you want

Chinchilla aims to tell you what gives the best model for fixed training compute..
But most of the compute in areal deployment is inference.. So we should ‘over’ train

* GPT3-2tokens/param

* Chinchilla - 20 tokens / param

« LLaMAG65B - 22 tokens / param

« Llama270B - 29 tokens / param
 Mistral 7B - 110 tokens / param

« Llama370B - 215tokens/param

The more usage we expect, the more it becomes worth it to pay the upfront cost

4.0 1

3.8 1

NLL (val)

344

3.2 1

Recent example for different (diffusion) models

Methods like IsoFLOPS are pretty easy to execute, and our group hasreplicated these results

AT of
hA S

1.0x 10'® FLOPs

4.0%10'° FLOPs
1.6x 10" FLOPs
6.4%10'7 FLOPs

2.6% 10" FLOPs W

T T
107 108
Non-Embedding Parameters

Gulrajani+ 2023.

NLL (val)

4.6 1

)

FN
()

>
=

&
»
L

o
o
)

4.0x10'® FLOPs
1.6x 10" FLOPs
6.4x10'7 FLOPs
2.6x10'8 FLOPs

1.0x 10" FLOPs W

T T
107 108
Non-Embedding Parameters

Figure 5: IsoFLOP profiles for autoregressive models (left) and diffusion models (right).

5.0
4.5 1
£ 401
|
=
Z
3.5
—— Diffusion
~——— Autoregressive
3.0

16[6

1(;18 1020

Non-Embedding FLOPs

Scaling laws for models and compute

Log-linearity extends to model parameters and compute!

Lets us set the following based on small models
- Pick optimizer
- Pick architecture and model sizes

Also lets us make smart resource tradeoffs
- Big models vs more data?

Recap: scaling laws - surprising and useful!

- Data scaling: understand how data affects models, clean theory
- Model scaling: dramatically reduce costs for training

- Scaling as prediction: understand what problems can be ‘brute forced’

o)

	Slide 1: Lecture 9
	Slide 2: Taking scaling seriously
	Slide 3: Scaling isn’t easy
	Slide 4: Today: simple, predictive ‘laws’ for behaviors of LMs
	Slide 5: Part 1. Scaling laws, history and background.
	Slide 6: Sample complexity and rates
	Slide 7: Earliest (data) scaling law paper – 1993
	Slide 8: Early history of scaling laws – data scaling
	Slide 9: Early history of scaling laws – data scaling
	Slide 10: Hestness et al 2017
	Slide 11: Hestness II
	Slide 12: Part 2. Neural (LLM) scaling behaviors
	Slide 13: Scaling laws – power law relationships for many factors
	Slide 14: Data vs performance
	Slide 15: Data scaling laws for language models
	Slide 16: Conceptual foundations of data scaling laws.
	Slide 17: Toy example: mean estimation
	Slide 18: Scaling law exponents: an intriguing mystery
	Slide 19: Detour: scaling laws for (nonparametric) learning
	Slide 20: Intrinsic dimensionality theory of data scaling laws
	Slide 21: Other data scaling laws
	Slide 22: Other advanced data scaling law: distribution shift
	Slide 23: Scaling laws under data repetition
	Slide 24: Data selection scaling and accounting for finiteness
	Slide 25: Recap: data scaling laws
	Slide 26: Scaling laws for model engineering
	Slide 27: Hyperparameter questions
	Slide 28: 1. Architecture: transformers vs LSTMs
	Slide 29: 1. Many architectures
	Slide 30: 2. Optimizer choice
	Slide 31: 3. Depth/Width: Number of layers
	Slide 32: 3. Depth/Width: But not all parameters are made equal
	Slide 33: 3. Depth/Width: and other Transformer hypers
	Slide 34: 4. Batch size: Critical batch size
	Slide 35: 4. Batch size: critical batch size
	Slide 36: 4. Batch size: selecting the optimal batch
	Slide 37: 5. Learning rates: muP and scale-aware LR choices
	Slide 38: Caution – scaling behaviors can differ downstream
	Slide 39: Some surprising takeaways
	Slide 40: One important use of scaling laws
	Slide 41: Model-data joint scaling is accurate
	Slide 42: Compute tradeoffs.
	Slide 43: Caution – ‘Optimal’ scaling laws are hard to get
	Slide 44: Main difference – accounting for LR schedules
	Slide 45: Chinchilla in depth – 3 methods
	Slide 46: Method 1 – minimum over runs.
	Slide 47: Method 2 - IsoFLOPS
	Slide 48: Method 3 – Joint fits
	Slide 49: Fun addendum – errors in chinchilla method 3
	Slide 50: Important note – train-optimal may not be what you want
	Slide 51: Recent example for different (diffusion) models
	Slide 52: Scaling laws for models and compute
	Slide 53: Recap: scaling laws – surprising and useful!

